Павел черенков нобелевская премия за что. Павел Алексеевич Черенков: биография. Награды и премии

В 1928 году окончил Воронежский университет.

С 1930 года начал работать в Москве – в Физическом институте Академии наук СССР. С 1948 года – профессор Московского энергетического, а с 1951 года – Московского инженерно-физического института. Основные работы Черенкова посвящены физической оптике, ядерной физике, физике космических лучей, ускорительной технике.

С 1932 года Черенков работал под руководством академика С. И. Вавилова. Именно он предложил Черенкову тему исследования – люминесценцию растворов урановых солей под действием гамма-лучей. Он же предложил и метод, который сам до того использовал неоднократно. Как ни странно, «метод гашения» Вавилов вычитал в старинном мемуаре физика Ф. Мари «Новые открытия, касающиеся света».

«…Метод требовал тщательной тренировки, длительного пребывания в полной темноте, – писал физик В. Карцев в своей превосходной книге о физиках. – Каждый рабочий день Черенкова начинался с того, что он прятался в темной комнате и сидел там в кромешной тьме, привыкая к этой обстановке. Лишь после длительной адаптации, продолжавшейся иной раз несколько часов, Черенков подходил к приборам и начинал измерения. Начав облучать гамма-источником соли урана, он довольно быстро обнаружил странное явление: таинственный свет. Нужно сказать, что он вовсе не был первым, кто заметил это свечение. Его уже наблюдали в лаборатории Жолио-Кюри и отнесли за счет люминесценции примесей, имеющихся в каждом, даже весьма чистом растворе.

Черенков призвал руководителя.

Привыкнув к темноте, Вавилов увидел, как ему показалось, конус слабого синего света. Но это свечение совсем не было похоже на то, которое можно было наблюдать в растворах под действием, например, ультрафиолетовых лучей. Это не было и тем свечением, которое обычно бывает за счет, как выражался Сергей Иванович, «дохлых бактерий», то есть следов люминесцирующих веществ. П. А. Черенков вспоминал: «Не останавливаясь на деталях этого открытия, я хотел бы сказать, что оно могло осуществиться только в такой научной школе, как школа С. И. Вавилова, где были изучены и определены основные признаки люминесценции и где были разработаны строгие критерии различения люминесценции от других видов излучения. Не случайно поэтому, что даже в такой крупнейшей школе физиков, как парижская, прошли мимо этого явления, приняв его за обычную люминесценцию. Я специально подчеркиваю это обстоятельство потому, что оно полнее и, как мне кажется, правильнее определяет ту выдающуюся роль, которую сыграл С. И. Вавилов в открытии нового эффекта».

Вавилов отверг люминесцентную природу свечения.

Во-первых, выяснилось, что оно направлено конусом вдоль оси гамма-излучения. Во-вторых, оно никак не укладывалось в те определения люминесценции, которые к тому времени были сформулированы Вавиловым. Ампулы с радием вызывали в растворе урановой соли свечение нового, неизвестного, типа. Интересней всего было то, что оно продолжалось и тогда, когда концентрация соли уменьшалась до совершенно гомеопатических доз. Более того, светилась чистая дистиллированная вода. При этом на интенсивность необычного свечения не оказывали влияния те вещества, которые обычно сильно гасили нормальную люминесценцию, такие, как йодистый калий и анилин. Спектральный состав свечения никак не зависел от состава жидкости.

Слухи о вновь обнаруженном свечении поползли по Москве и Ленинграду. И. М. Франк писал, что он очень хорошо помнит язвительные замечания по поводу того, что в ФИАНе занимаются изучением никому не нужного свечения неизвестно чего неизвестно где. «Не пробовали ли вы изучать в шляпе?» – ехидно спрашивали Черенкова незнакомые и знакомые физики.

Сообщение о новом открытии напечатали в «Докладах Академии наук СССР» в 1934 году.

Сообщений было, собственно, два.

Первое – об обнаружении явления – подписано П. А. Черенковым; Вавилов отказался от подписи, чтобы не осложнять Черенкову защиту его кандтидатской диссертации. Второе подписано Вавиловым – там дается описание эффекта и определенно указывается, что он никак не связан с люминесценцией, а вызывается свободными быстрыми электронами, образующимися при воздействии гамма-лучей на среду. Интересно, что Вавилов пишет о «синем» свечении. Это доказательство его богатой физической интуиции; цвет излучения в тех условиях обнаружить было невозможно.

Полностью эффект был объяснен лишь в 1937 году, когда два советских физика И. М. Франк и И. Е. Тамм разработали его теорию. Объяснение было совершенно необычным: действительно, как и утверждал Вавилов, это свечение вызывается электронами. Но не простыми, а такими, что движутся со скоростью, превышающей скорость света. Разумеется, речь идет о скорости распространения света в данной среде. Двигаясь быстрее этой скорости, электроны излучают электромагнитные волны. Возникает свечение Вавилова – Черенкова. Впоследствии, уже после войны (в 1958 году), и открыватели, и объяснители этого явления были удостоены Нобелевской премии. Нобелевскую премию получили П. А. Черенков, И. Е. Тамм и И. М. Франк. Вавилов к тому времени скончался, а Нобелевская премия, как известно, вручается только живым.

Докторскую диссертацию Черенков защитил все по тому же явлению. Одним из его оппонентов был академик Л. И. Мандельштам. Профессор С. М. Райский позже вспоминал: «Я сидел в столовой Мандельштамов, когда Леонид Исаакович закончил писать свой отзыв и вышел из кабинета. Он дал мне прочесть свой отзыв. Прочитав, я задал вопрос, почему в отзыве о диссертации П. А. Черенкова такое большое место занимает С. И. Вавилов? Леонид Исаакович ответил: „Роль Сергея Ивановича в открытии эффекта такова, что ее следует указывать всегда, когда идет речь об этом открытии“.

В 1947 году В. Л. Гинзбург теоретически показал, что с помощью явления Вавилова – Черенкова можно генерировать ультракороткие, миллиметровые и даже субмиллиметровые волны. Необычайно широкое применение приобрели счетчики Черенкова, принцип действия которых основан на регистрации атомных частиц за счет возникающего свечения. Этот тонкий метод исследования привел к блестящим открытиям нашего времени, в частности к открытию антипротона и антинейтрона – первых частиц антивещества, созданных на Земле.

В 1970 году Черенков был избран действительным членом Академии наук СССР.

«Первичное экспериментальное открытие обычно случайно. Именно поэтому его нельзя предвидеть и оно оказывается результатом случая. Такого рода счастливые случаи очень редки в жизни даже самого активного ученого. Поэтому их нельзя пропускать. Никогда не следует проходить мимо неожиданных и непонятных явлений, с которыми невзначай встречаешься в эксперименте».

Эти слова академика Семенова, несомненно, были хорошо понятны Черенкову.

Черенков внес значительный вклад в создание электронных ускорителей – синхротронов. В частности, он принимал деятельное участие в проектировании и сооружении синхротрона на 250 МэВ. За эту работу в 1952 году он получил Государственную премию. Изучал взаимодействие тормозного излучения с нуклонами и ядрами, фотоядерные и фотомезонные реакции. Еще одну государственную премию он получил в 1977 году за цикл работ по исследованию расщепления легких ядер гамма-квантами высоких энергий. В 1984 году удостоен звания Героя Социалистического труда.

Павел Алексеевич Черенков родился 28 июля 1904 года в селе Новая Чигла Воронежской области в семье крестьянина. По окончании средней школы Павел поступает в Воронежский государственный университет, который окончил в 1928 году. После этого Черенков поступил вначале на подготовительное, а затем в 1932 году на основное отделение Физического (тогда Физико‑математического) института Академии наук СССР.

В 1930 году Черенков женился на Марии Путинцевой, дочери профессора русской литературы. У них было двое детей.

Начало научной деятельности Черенкова относится к 1932 году, когда он под руководством С.И. Вавилова приступил к изучению люминесценции растворов ураниловых солей под действием гамма‑лучей.

Поначалу в полном соответствии с законом Вавилова–Стокса у Черенкова огромные гамма‑кванты источника излучения преобразовались в малые кванты видимого света, то есть люминесцировали.

«Интересно, – рассуждал ученый, – как она изменится, если увеличить концентрацию? А если, наоборот, разбавить раствор водою? Важна, конечно, не общая картина, а точно выраженный физический закон».

До поры до времени никаких сюрпризов: меньше растворено солей – меньше люминесценция.

«Наконец в растворе остаются лишь следы уранила. Теперь уж, разумеется, никакого свечения быть не может.

Но что это?! Черенков не верит своим глазам. Уранила осталась гомеопатическая доза, а свечение продолжается. Правда, очень слабое, но продолжается. В чем дело?

Черенков выливает жидкость, тщательно промывает сосуд и наливает в него дистиллированную воду. А это что такое? Чистая вода светится так же, как и слабый раствор. Но ведь до сих пор все были уверены, что дистиллированная вода неспособна к люминесценции.

Вавилов советует аспиранту попробовать поставить вместо стеклянного сосуд из другого материала. Черенков берет платиновый тигель и наливает в него чистейшую воду. Под дном сосуда помещается ампула со ста четырьмя миллиграммами радия. Гамма‑лучи вырываются из крошечного отверстия ампулы и, пробивая платиновое дно и слой жидкости, попадают в объектив прибора, нацеленного сверху на содержимое тигля.

Снова приспособление к темноте, снова наблюдение, и… опять непонятное свечение.

– Это не люминесценция, – твердо говорит Сергей Иванович. – Это что‑то другое. Какое‑то новое, неизвестное пока науке оптическое явление.

Вскоре всем становится ясно, что в опытах Черенкова имеют место два свечения. Одно из них – люминесценция. Оно, однако, наблюдается лишь в концентрированных растворах. В дистиллированной воде под влиянием гамма‑облучения мерцание вызывается иной причиной…

А как поведут себя другие жидкости? Может быть, дело не в воде?

Аспирант наполняет тигель по очереди различными спиртами, толуолом, другими веществами. Всего он испытывает шестнадцать чистейших жидкостей. И слабое свечение наблюдается всегда. Поразительное дело! Оно оказывается очень близким по интенсивности для всех материалов. Четыреххлористый углерод светится всех сильнее, изобутановый спирт – всех слабее, но разница их свечений не превышает 25 процентов.

Черенков пытается погасить свечение особыми веществами, считающимися сильнейшими гасителями обычной люминесценции. Он добавляет к жидкости азотнокислое серебро, йодистый калий, анилин… Эффекта (гасительного) никакого: свечение продолжается. Что делать?

По совету руководителя он нагревает жидкость. На люминесценцию это всегда влияет сильно: она ослабевает и даже прекращается совсем. Но в данном случае яркость свечения не меняется ничуть. Выходит, здесь действительно какое‑то особое, доныне неизвестное явление? Какое же?»

В 1934 году в «Докладах Академии наук СССР» появляются первые два сообщения о новом виде излучения: Черенкова, излагающего подробно результаты экспериментов, и Вавилова, пытающегося их объяснить.

Таинственное свечение можно было видеть только в пределах узкого конуса, ось которого совпадала с направлением гамма‑излучения. Учтя это обстоятельство, молодой ученый поместил свой прибор в сильное магнитное поле. И тут же убедился, что поле отклоняет узкий конус свечения в сторону. Но это возможно лишь для электрически заряженных частиц, например электронов. Чтобы окончательно убедиться в этом, Черенков использовал другой вид излучения – бета‑лучи, представляющих собою поток быстрых электронов. Он облучил ими те же жидкости, что и раньше, и получил такой же световой эффект, как при гамма‑облучении.

Так было выяснено, что загадочное оптическое явление возникает только там, где налицо движение быстрых электронов.

Объяснение механизма преобразования движения электронов в движение фотонов необычного свечения дали в 1937 году советские физики Франк и Тамм. Электроны летят быстрее, чем распространяется свет в данной среде, и в результате возникает необычное явление: порожденные электронами электромагнитные волны отстают от своих родителей и вызывают свечение.

Вскоре появилась крылатая фраза: «Греки слышали голоса звезд, а в черенковском свечении слышны голоса электронов. Это поющие электроны».

В 1935 году Черенков окончил аспирантуру и защитил кандидатскую диссертацию, после чего получил должность старшего научного сотрудника Физического института им. Лебедева АН СССР (ФИАН).

Он продолжал исследовать открытое им свечение. В 1936 году он установил характерное свойство нового вида излучения – своеобразную пространственную асимметрию («черенковский конус»).

После появления количественной теории явления, разработанной Таммом и Франком, Черенков в серии тонких экспериментов подтверждает ее во всех деталях. Фундаментальные работы Черенкова по исследованию открытого им излучения заряженных частиц, движущихся со сверхсветовой скоростью, явились значительным вкладом в мировую науку и признаны классическими.

«Помимо принципиального научного значения, излучения Черенкова имеют и большую практическую ценность, – пишет И.М. Дунская. – Исключительно важна его роль в физике высоких энергий. При движении быстрой частицы в среде возникает направленная световая вспышка, которую регистрируют с помощью фотоумножителя. Такие счетчики используются как для обнаружения быстрых заряженных частиц, так и для определения их свойств: направления движения, величины заряда, скорости и т д. Счетчики Черенкова, благодаря характерным особенностям излучения, существенно расширяют возможности эксперимента и позволяют выполнить эксперименты, невозможные при использовании обычных люминесцентных счетчиков. В частности, черенковское излучение было использовано в опытах по обнаружению антипротона. Оно позволяет также наблюдать наиболее быстрые частицы космических лучей».

За работы по открытию и изучению этого явления Черенкову совместно с Вавиловым, Таммом и Франком сначала в 1946 году присудили Государственную премию, а в 1958 году (уже после смерти Вавилова) Черенков, Тамм и Франк были удостоены звания Лауреатов Нобелевской премии по физике.

В послевоенные годы Черенков некоторое время занимался исследованиями космических лучей, а также принимал руководящее участие в разработке и сооружении ускорителей легких частиц. Так, в январе 1948 года под его руководством осуществлен запуск первого в СССР бетатрона. Одновременно Черенков принимает участие в работах по проектированию и сооружению синхротрона ФИАН на 250 МэВ, за что в 1951 году получил Государственную премию. Вскоре после запуска синхротрона ученый принял руководство над всеми работами по его усовершенствованию, что позволило развернуть работы по изучению электромагнитных взаимодействий в области фотонов больших энергий. В возглавляемой Черенковым лаборатории фотомезонных процессов удалось получить целый ряд интереснейших результатов по изучению процессов фоторасщепления гелия, фотообразования пи‑мезонов, фоторасщепления некоторых легких ядер методом наведенной активности.

В середине пятидесятых годов Черенков, совместно с И.В. Чувило, экспериментально исследовал фотоделение ядер тяжелых элементов. Затем под руководством Павла Алексеевича был успешно разработан новый метод накопления и получения встречных электрон‑позитронных пучков. В 1963–1965 годах проводились детальные исследования этого метода, а в начале 1966 года принципиальная возможность его была проверена экспериментально на 280 МэВ синхротроне ФИАН. Таким образом, впервые в практике физического эксперимента были получены встречные пучки электронов и позитронов.

«Работы по накоплению и получению встречных пучков в ускорителях имеют первостепенное значение для физики высоких энергий, – отмечает И.М. Дунская. – Использование этого метода позволяет перевести действующие ускорители в режим накопления и тем самым на основе уже имеющейся экспериментальной базы перейти к исследованиям взаимодействий в области высоких и сверхвысоких энергий. Этот метод был впоследствии использован для получения встречных пучков на крупнейшем электронном ускорителе в Кембридже (США)».

В 1964 году Павла Алексеевича избрали членом‑корреспондентом Академии наук СССР, а в 1970 году – действительным членом Академии наук СССР.

В 1977 году за цикл работ по исследованию расщепления легких ядер гамма‑квантами высоких энергий методом камер Вильсона, действующих в мощных пучках электронных ускорителей, Черенков удостоен Государственной премии СССР.

Кроме научной деятельности Черенков вел большую педагогическую работу, сначала с 1948 года в должности профессора Московского энергетического института, а с 1951 года и Московского инженерно‑физического института. Он дал путевку в жизнь большому числу исследователей.

Первый советский лауреат Нобелевской премии по физике, выдающийся советский ученый, основные работы которого посвящены физической оптике, ядерной физике и физике частиц высоких энергий, двукратный лауреат Сталинской и Государственной премий, Герой Социалистического Труда, академик П. А. Черенков родился 28 (15 по ст. ст.) июля 1904 года в селе Новая Чигла Бобровского уезда (ныне Таловского района) Воронежской губернии в семье зажиточных крестьян-середняков.

Дорога к вершинам науки началась для будущего физика в церковно-приходской школе, которую Павел Черенков закончил в 1917 году.

Его дальнейшее образование прервали бурные события революции и гражданской войны. 13-летним подростком он устраивается на работу в местное сельское потребительское товарищество (сельпо) чернорабочим. Толкового, грамотного, сообразительного паренька заметили. В 1919 году его перевели на работу конторщиком в той же организации.

Село Новая Чигла

В 1920 году на базе, переведенной из Боброва в Новую Чиглу, гимназии открылась школа второй ступени, в которой Павел Черенков продолжил учебу, совмещая ее с работой счетовода Новочигольского ссыпного пункта. В 1924 году, получив школьный аттестат, он поступил на физико-техническое отделение педагогического факультета Воронежского университета и через четыре года — в 1928-ом — окончил его с отличием.

Главный корпус ВГУ (1930-е гг.)

Молодого специалиста направили в качестве преподавателя физики в среднюю школу города Козлов (ныне Мичуринск). Через 2 года в этот же город по распределению попала Мария Алексеевна Путинцева, дочь Алексея Михайловича Путинцева, воронежского литературоведа-краеведа, профессора ВГУ, основателя дома-музея И. С. Никитина. Мария также являлась выпускницей ВГУ, окончив отделение русского языка и литературы педфака. У молодых людей завязались романтические отношения, которые привели их к свадьбе, состоявшейся в 1930, году.

Выставка памяти А.М. Путинцева

Однако семейной жизни на первых порах не суждено было быть безоблачной и счастливой. В конце 1930 года в Воронеже был арестован по делу краеведов отец Марии, а отец Павла Черенкова Алексей Егорович в это же время был раскулачен в Новой Чиле. В 1931 году отец будущего академика был осужден и отправлен в ссылку. В обвинении значились возможная принадлежность к партии эсеров и участие в «кулацкой» сходке 1930 года. Следствие показало, что обвинения являлись ошибочными, однако в 1937 году отца будущего ученого вновь подвергли аресту, осудив и расстреляв якобы за контрреволюционную агитацию.


В этом смысле П. А. Черенков был не только героем своей эпохи, но ее мучеником и жертвой. Как то делали многие другие не менее достойные люди, он не отрекся публично от своих родных. Но до конца своих дней носил в душе боль утраты об отце, о котором долгое время не мог даже рассказать своим детям.

Вавилов С.И. с сотрудниками Государственного Оптического института

В 1930 году П. А. Черенков поступил в аспирантуру Института физики и математики АН СССР в Ленинграде. Здесь и началась его научная деятельность, когда в 1932 году молодой аспирант по предложению своего научного руководителя С. И. Вавилова взялся исследовать люминесценцию растворов ураниловых солей под действием Ў-лучей радия. В процессе этих исследований им было обнаружено новое, удивительно красивое физическое явление: под действием радиоактивных лучей в оптически прозрачных жидкостях возникало слабое свечение, резко отличающееся от обычной люминесценции. В удивительно простых по современным представлениям, но трудоемких опытах, в которых использовался метод фотометрии по порогу зрения – разработанный Вавиловым и Брумбергом – П. А. Черенков обнаружил и исследовал все основные свойства открытого им излучения. При проведении этих опытов ярко проявились черты характера ученого — увлеченность, необычайное упорство, способность находить простейшие пути для решения возникающих задач, внимание к “мелочам” эксперимента.

Физический институт им. П.Н. Лебедева (ФИАН)

Меж тем, в 1935 году защитив кандидатскую диссертацию, П. А. Черенков стал научным сотрудником Физического института им. П.Н. Лебедева в Москве (ФИАН), где и работал в дальнейшем. В 1936 году молодой ученый, совершил открытие, сыгравшее важную роль в развитии эксперимента в физике элементарных частиц: обнаружив излучение света «быстрыми электронами» (т.е. электронами, имеющими скорости, превышающие скорость света в среде), он установил основное свойство обнаруженного им голубого свечения - его направленность, образование светового конуса, ось которого совпадает с траекторией движения частицы. Это послужило ключевым фактором для его коллег, Ильи Франка и Игоря Тамма, создавших теорию, которая дала полное объяснение голубому свечению, ныне известному как излучение Черенкова (Вавилова – Черенкова в Советском Союзе). За эту работу в 1940 году П. А. Черенков был удостоен степени доктора физико-математических наук.

П. А. Черенков с коллегами

В годы Великой Отечественной войны П. А. Черенков занимался разработкой прибора оборонного назначения, основанного на использовании некоторых методов ядерной физики.
В последующие годы научные интересы П.А. Черенкова были связаны с исследованиями космических лучей. Результатом этих исследований явилось обнаружение многозарядных ионов в составе вторичной копоненты космического излучения.
Начиная с 1946 года, П. А. Черенков участвовал в разработке и сооружении первых электронных ускорителей в лаборатории, которой руководил В.И. Векслер. За участие в работах по созданию электронного синхротрона на энергию 250 МэВ доктору физико-математических наук Черенкову вместе с коллективом авторов была присуждена Сталинская премия второй степени (впоследствии переименованная в Государственную премию).

П. А. Черенков в лаборатории

В дальнейшем он возглавил работы, связанные с усовершенствованием основных узлов синхротрона, в результате чего по своим параметрам ускоритель занял ведущее место в мире среди установок этого класса. Благодаря этому в Советском Союзе была создана современная по тому времени экспериментальная база для проведения исследований по физике электронных взаимодействий в области средних энергий.

Лауреаты Нобелевской премии 1958 года

Меж тем открытие Черенкова довольно быстро обратило на себя внимание специалистов из разных стран, а когда началось стремительное развитие его практических приложений, прежде всего благодаря черенковским счетчикам элементарных частиц, его имя стало едва ли не самым часто упоминаемым в работах по экспериментальной физике.
Научная изоляция СССР помешала более раннему выдвижению П. А. Черенков а на соискание Нобелевской премии. Хотя теперь известно, что, по меньшей мере, одна такая попытка была. В 1952 году кандидатуру Черенкова предлагал Леон Розенфельд, известный физик-теоретик, в то время профессор Манчестерского университета. При этом он отмечал трудности с представлением текстов работ, описывающих эффект Черенкова, и смог приложить только их список.

П. А. Черенков получает Нобелевскую премию

Однако со временем положение изменилось. Наша страна и ее наука больше открылись миру. В 1958 году П.А.Черенков, И.Е.Тамм и И.М.Франк стали первыми физиками нашей страны — лауреатами Нобелевской премии, которая была присуждена им с формулировкой «за открытие и истолкование эффекта Черенкова».

28 июля 1904 года родился Павел Черенков, физик, лауреат Нобелевской премии за 1958 год.

Личное дело

Павел Алексеевич Черенков (1904—1990) родился в селе Новая Чигла Воронежской губернии, в семье крестьян. После окончания церковно-приходской школы, в разгар Гражданской войны, трудился чернорабочим, конторщиком. Затем доучивался в школе-гимназии, переведенной в село из уездного Боброва.

В 1924 году поступил на физико-математическое отделение Воронежского университета. Стипендия была небольшой, будущий ученый подрабатывал частными уроками, разгрузкой вагонов, а в каникулы, когда приезжал домой, работал счетоводом на мельнице.

После окончания университета в 1928 году был направлен учителем в школу Козлова (ныне Мичуринск). В 1930 году познакомился со своей будущей женой Марией Путинцевой. Их дочь, ученый-физик Елена Черенкова писала об этом периоде: «Здесь [в Козлове] они познакомились, здесь начался их совместный дальнейший путь. Красивые, умные, начитанные, трудолюбивые, веселые, верящие в широкие горизонты, раскрывающиеся перед страной и молодежью. Летом по путевке они объехали Крым. Прочитав объявление в газете, Павел написал заявление о приеме в аспирантуру в ленинградский Физико-математический институт Академии наук, прошел собеседование и был принят».

После зачисления в аспирантуру с осени 1930 года ученый стал жить в Ленинграде, Мария смогла приехать к нему после окончания процесса над отцом, профессором-филологом Воронежского университета, который в ноябре 1930 года был арестован по «делу краеведов» и осужден на пять лет лагерей. В апреле 1931 года Черенковы зарегистрировали брак.

В 1932 году в семье родился первенец Алексей, через четыре года, уже в Москве, появилась дочь Елена.

В аспирантуре научным руководителем Черенкова был директор ленинградского Физико-математического института Сергей Вавилов. Молодому ученому досталась внешне простая и малопривлекательная тема по исследованию люминесценции ураниловых солей.

Наблюдению этого явления мешало добавочное фоновое свечение, избавиться от которого не удавалось. Первая публикация Черенкова о новом виде излучения вышла в 1934 году. В 1937 году Илья Франк и Игорь Тамм по совету Вавилова, давшего излучению первичное обоснование, смогли описать его излучение на основе классической электродинамики.

Сначала статью Черенкова не приняли в журнале Nature, Ее опубликовал журнал The Physical Review. В 1938 году ученые Д. В. Коллинз и В. Д. Рейлинг сумели повторить эксперимент Черенкова, они же впервые использовали термин Cherenkov radiation.

Осенью 1958 году Черенкову совместно с Франком и Таммом была присуждена Нобелевская премия по физике. Дочь ученого вспоминала, что супруга советского посла в Швеции «подробно рассказала маме о требованиях к одежде. Мужчинам — фраки, женщинам — платья определенной длины, обязательно с декольте, украшения только натуральные, никаких мехов, даже самых дорогих. Платья не должны повторяться ни на одном приеме. Рассказала о манере держаться в зависимости от титула особы визави».

Жена Черенкова была единственной из близких, кого отпустили с советскими учеными на церемонию награждения. Она же и рассказала детям об увиденном: «Нобелевские торжества приходятся на предрождественские дни. Витрины магазинов выглядели особенно празднично. Теперь многим трудно представить себе, насколько однообразны и убоги были наши витрины 58-го года. Мама оценила ту жизнь, что увидела в Швеции, так: "Все, как у нас до революции"».

С 1935 года Черенков был сотрудником Физического института им. П. Н. Лебедева (ФИАН), с 1948 года — профессором Московского энергетического института, с 1951 года — профессором Московского инженерно-физического института (МИФИ). Создал и много лет бессменно возглавлял Отдел физики высоких энергий в филиале ФИАН в подмосковном Троицке.

Член-корреспондент АН СССР с 1964 года, действительный член АН СССР с 1970 года.

Чем знаменит

Открыл «эффект Вавилова — Черенкова» — свечение, вызываемое в прозрачной среде заряженными частицами, которые движутся со скоростью, превышающей скорость света в этой среде. Это излучение широко используется для регистрации релятивистских частиц и определения их скоростей.

Черенков — Герой Социалистического Труда (1984), лауреат двух Сталинских премий (1946, 1952) и Государственной премии СССР (1977). Один из немногих отечественных ученых, получивших Нобелевскую премию по физике.

О чем надо знать

Семью Черенкова — и его родителей, и родителей жены — коснулись сталинские репрессии. В 1932 году выпустили из лагеря его тестя, профессора Алексея Путинцева. В последующие годы тот вместе с супругой вынужден был скитаться по стране в поисках работы и жилья. В 1937 году он скончался. В том же году был арестован его брат, священник Михаил Путинцев.

Прямая речь:

О «свечении Черенкова» (Б. Б. Говорков, доктор физико-математических наук): «Мне посчастливилось всю жизнь проработать в лаборатории Черенкова. Поэтому многие детали исследований, приведших к открытию эффекта Черенкова, мне стали известными из уст самого Павла Алексеевича. Так, на мой вопрос, как ему удалось впервые увидеть предельно слабое новое излучение, он ответил, что впервые наблюдал новое свечение при проведении фоновых экспериментов. Вавилов поставил перед ним, тогда аспирантом, задачу изучить люминесценцию растворов ураниловых солей при облучении их гамма-квантами от радиоактивного радиевого источника. Проводя измерения люминесценции упомянутых растворов, Черенков решил посмотреть, не влияют ли на люминесценцию стенки стеклянного стаканчика и сам чистый растворитель — серная кислота. Павел Алексеевич рассказывал, что, заметив свечение стаканчика с чистым растворителем, он очень удивился. Тогда он направился на склад Физического института им. П. Н. Лебедева (ФИАН) и собрал там все прозрачные жидкости. Вернувшись в лабораторию, он повторил опыты по наблюдению свечения с другими чистыми веществами. Все жидкости светились! Причем все примерно с равной интенсивностью (±15%).

Попытки потушить свечение по методам, разработанным Вавиловым с учениками (использование гасящих добавок, нагрев жидкостей и др.), оказались безуспешными — все жидкости светились и всё тут! При очередной встрече со своим руководителем Павел Алексеевич подробно рассказал о неожиданном результате измерений фона. В итоге обсуждения появились новые планы и идеи в постановке опытов, доказывающих нелюминесцентный характер излучения, в частности выясняющих роль электронов в получении нового излучения».

О скромности ученого (тот же автор): «Во время одного из заседаний упомянутой выше конференции (Международная конференция по аппаратуре в физике высоких энергий, проходившая в 1970 году в Дубне), где в каждом докладе звучало его имя: черенковские счетчики, черенковские спектрометры, излучение Вавилова-Черенкова и т. д., Павел Алексеевич наклонился ко мне и тихо сказал на ухо:

"Борис Борисович, вы знаете, мне все время кажется, что все это относится не ко мне. Что где-то, когда-то жил другой Черенков, вот о нем все и говорят"».

Дочь ученого Елена Черенкова о занятиях отца после вручения Нобелевской премии: «В последующие годы после 1958-го его проблемами были научные и научно-организационные. От работ по созданию ускорителей элементарных частиц его отвлекали многочисленные поездки: на научные конференции, совещания научно-организационного характера, по делам Комитета защиты мира, юбилейного характера. Особенно интересными для папы оказались юбилейные торжества, посвященные 350-летию публикации трудов Галилея "Диалоги о двух главнейших системах мира — птоломеевой и коперниковой" и 150-летию со дня рождения Нобеля».

5 фактов о Павле Черенкове:

  • Первый «научный эксперимент» провел в детстве: коснулся языком заиндевевшей дверной ручки.
  • В зрелые годы увлекался искусством и спортом. «Бесконечно любознательная натура отца влекла его в походы, притягивала к чтению книг самых разнообразных, последние годы — к живописи и музыке. Он всегда предпочитал активный отдых. Зимой — лыжи, летом — теннис и прогулки. Теннис был его большим увлечением. Он любил участвовать в соревнованиях, любил натягивать струны на ракетки», — вспоминала его дочь Елена Черенкова.
  • Положил начало троицкому теннису, построил в этом подмосковном городе первый теннисный корт.
  • Любил снимать на камеру и самостоятельно печатать снимки. По признанию дочери, «оставил огромное количество фотографий (к сожалению, на них мало изображений его самого)».
  • 1958 год стал одним из самых плодотворных в международном признании СССР. Наряду с Черенковым, Франком и Таммом, получившими Нобелевскую премию по физике, этой же награды по литературе был удостоен Борис Пастернак. Однако советское руководство вынудило его отказаться от награды.

Материалы о Павле Черенкове:

сайт информационно-развлекательно-образовательный сайт для любых возрастов и категорий интернет пользователей. Здесь и дети, и взрослые с пользой проведут время, смогут повысить свой уровень образования, прочесть любопытные жизнеописания великих и известных в разных эпохах людей, посмотреть фотоматериалы и видео из частной сферы и общественной жизни популярных и именитых личностей. Биографии талантливых актеров, политиков, ученых, первооткрывателей. Мы представим Вам с творчество, художников и поэтов, музыку гениальных композиторов и песни знаменитых исполнителей. Сценаристы, режиссеры, космонавты, физики-ядерщики, биологи, атлеты – множество достойных людей, оставивших отпечаток во времени, истории и развитии человечества собраны воедино на наших страницах.
На сайт Вы узнаете малоизвестные сведения из судеб знаменитостей; свежие новости из культурной и научной деятельности, семейной и личной жизни звезд; достоверные факты биографии выдающихся жителей планеты. Все сведения удобно систематизированы. Материал подан в простом и понятном, легком для чтения и интересно оформленном виде. Мы постарались, чтоб наши посетители получали здесь необходимую информацию с удовольствием и большим интересом.

Когда хочется узнать подробности из биографии известных людей, нередко начинаешь выискивать информацию из множества справочников и статей, разбросанных по всему интернету. Теперь, для Вашего удобства, все факты и наиболее полные сведения из жизни интересных и публичных людей собраны в одном месте.
сайт подробно расскажет о биографии знаменитых людей оставивших свой отпечаток в человеческой истории, как в глубокой древности, так и в нашем современном мире. Тут можно больше узнать о жизни, творчестве, привычках, окружении и семье Вашего любимого кумира. Об истории успеха ярких и неординарных людей. О великих ученых и политиках. Школьники и студенты почерпнут на нашем ресурсе необходимый и актуальный материал из биографии великих людей для различных докладов, рефератов и курсовых.
Узнавать биографии интересных людей, которые заслужили признание человечества, занятие часто очень увлекательное, так как истории их судеб захватывают не меньше иных художественных произведений. Для кого-то такое чтение может послужить сильным толчком для собственных свершений, даст веру в себя, поможет справиться с непростой ситуацией. Встречаются даже заявления, что при изучении историй успеха других людей, в человеке помимо мотивации к действию, проявляются и лидерские качества, укрепляется сила духа и упорство в достижении целей.
Интересно почитать и размещенные у нас биография богатых людей, чья стойкость на пути к успеху достойна подражания и уважения. Громкие имена прошлых столетий и нынешних дней всегда будут вызывать любопытство историков и обычных людей. А мы поставили своей целью удовлетворить такой интерес в полной мере. Хотите блеснуть эрудицией, готовите тематический материал или просто интересно узнать все об исторической личности – заходите на сайт.
Любители почитать биографии людей могут перенять их жизненный опыт, научиться на чьих-то ошибках, сравнить себя с поэтами, художниками, учеными, сделать важные для себя выводы, самосовершенствоваться, используя опыт неординарной личности.
Изучая биографии успешных людей, читатель узнает, как были сделаны великие открытия и достижения, давшие шанс человечеству взойти на новую ступень в своем развитии. Какие препятствия и сложности пришлось преодолеть многим известным людям искусства или ученым, знаменитым врачам и исследователям, бизнесменам и правителям.
А как увлекательно окунуться в историю жизни какого-либо путешественника или первооткрывателя, представить себя в качестве полководца или бедного художника, узнать историю любви великого правителя и познакомиться с семьей давнего кумира.
Биографии интересных людей у нас на сайте удобно структурированы так, чтоб посетителям не составляло труда найти в базе сведения о любом нужном человеке. Наша команда стремилась к тому, чтоб Вам понравилась и простая, интуитивно ясная навигация, и легкий, интересный стиль написания статей, и оригинальный дизайн страниц.



Статьи по теме